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Abstract

Most word representation methods assume
that each word owns a single semantic vec-
tor. This is usually problematic because
lexical ambiguity is ubiquitous, which is
also the problem to be resolved by word
sense disambiguation. In this paper, we
present a unified model for joint word
sense representation and disambiguation,
which will assign distinct representation-
s for each word sense.1 The basic idea is
that both word sense representation (WS-
R) and word sense disambiguation (WS-
D) will benefit from each other: (1) high-
quality WSR will capture rich informa-
tion about words and senses, which should
be helpful for WSD, and (2) high-quality
WSD will provide reliable disambiguat-
ed corpora for learning better sense rep-
resentations. Experimental results show
that, our model improves the performance
of contextual word similarity compared to
existing WSR methods, outperforms state-
of-the-art supervised methods on domain-
specific WSD, and achieves competitive
performance on coarse-grained all-words
WSD.

1 Introduction

Word representation aims to build vectors for each
word based on its context in a large corpus, usually
capturing both semantic and syntactic information
of words. These representations can be used as
features or inputs, which are widely employed in
information retrieval (Manning et al., 2008), doc-
ument classification (Sebastiani, 2002) and other
NLP tasks.

1Our sense representations can be downloaded at http:
//pan.baidu.com/s/1eQcPK8i.

Most word representation methods assume each
word owns a single vector. However, this is usual-
ly problematic due to the homonymy and polyse-
my of many words. To remedy the issue, Reisinger
and Mooney (2010) proposed a multi-prototype
vector space model, where the contexts of each
word are first clustered into groups, and then each
cluster generates a distinct prototype vector for a
word by averaging over all context vectors with-
in the cluster. Huang et al. (2012) followed this
idea, but introduced continuous distributed vectors
based on probabilistic neural language models for
word representations.

These cluster-based models conduct unsuper-
vised word sense induction by clustering word
contexts and, thus, suffer from the following is-
sues:

• It is usually difficult for these cluster-based
models to determine the number of cluster-
s. Huang et al. (2012) simply cluster word
contexts into static K clusters for each word,
which is arbitrary and may introduce mis-
takes.

• These cluster-based models are typically off-
line , so they cannot be efficiently adapted to
new senses, new words or new data.

• It is also troublesome to find the sense that
a word prototype corresponds to; thus, these
cluster-based models cannot be directly used
to perform word sense disambiguation.

In reality, many large knowledge bases have
been constructed with word senses available
online, such as WordNet (Miller, 1995) and
Wikipedia. Utilizing these knowledge bases to
learn word representation and sense representation
is a natural choice. In this paper, we present a uni-
fied model for both word sense representation and
disambiguation based on these knowledge bases
and large-scale text corpora. The unified model
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can (1) perform word sense disambiguation based
on vector representations, and (2) learn continu-
ous distributed vector representation for word and
sense jointly.

The basic idea is that, the tasks of word sense
representation (WSR) and word sense disam-
biguation (WSD) can benefit from each other: (1)
high-quality WSR will capture rich semantic and
syntactic information of words and senses, which
should be helpful for WSD; (2) high-quality WS-
D will provide reliable disambiguated corpora for
learning better sense representations.

By utilizing these knowledge bases, the prob-
lem mentioned above can be overcome:

• The number of senses of a word can be de-
cided by the expert annotators or web users.

• When a new sense appears, our model can be
easily applied to obtain a new sense represen-
tation.

• Every sense vector has a corresponding sense
in these knowledge bases.

We conduct experiments to investigate the per-
formance of our model for both WSR and WS-
D. We evaluate the performance of WSR using a
contextual word similarity task, and results show
that out model can significantly improve the cor-
relation with human judgments compared to base-
lines. We further evaluate the performance on
both domain-specific WSD and coarse-grained all-
words WSD, and results show that our model
yields performance competitive with state-of-the-
art supervised approaches.

2 Methodology

We describe our method as a 3-stage process:

1. Initializing word vectors and sense vectors.
Given large amounts of text data, we first use
the Skip-gram model (Mikolov et al., 2013),
a neural network based language model, to
learn word vectors. Then, we assign vector
representations for senses based on their def-
initions (e.g, glosses in WordNet).

2. Performing word sense disambiguation.
Given word vectors and sense vectors, we
propose two simple and efficient WSD algo-
rithms to obtain more relevant occurrences
for each sense.

3. Learning sense vectors from relevant oc-
currences. Based on the relevant occur-
rences of ambiguous words, we modify the
training objective of Skip-gram to learn word
vectors and sense vectors jointly. Then, we
obtain the sense vectors directly from the
model.

Before illustrating the three stages of our
method in Sections 2.2, 2.3 and 2.4, we briefly
introduce our sense inventory, WordNet, in Sec-
tion 2.1. Note that, although our experiments will
use the WordNet sense inventory, our model is not
limited to this particular lexicon. Other knowledge
bases containing word sense distinctions and defi-
nitions can also serve as input to our model.

2.1 WordNet

WordNet (Miller, 1995) is the most widely used
computational lexicon of English where a concep-
t is represented as a synonym set, or synset. The
words in the same synset share a common mean-
ing. Each synset has a textual definition, or gloss.
Table 1 shows the synsets and the corresponding
glosses of the two common senses of bank.

Before introducing the method in detail, we in-
troduce the notations. The unlabeled texts are de-
noted as R, and the vocabulary of the texts is de-
noted as W . For a word w in W , wsi is the ith
sense in WordNet WN. Each sense wsi has a gloss
gloss(wsi) in WN. The word embedding of w is
denoted as vec(w), and the sense embedding of its
ith sense wsi is denoted as vec(wsi).

2.2 Initializing Word Vectors and Sense
Vectors

Initializing word vectors. First, we use Skip-
gram to train the word vectors from large amounts
of text data. We choose Skip-gram for its sim-
plicity and effectiveness. The training objective of
Skip-gram is to train word vector representations
that are good at predicting its context in the same
sentence (Mikolov et al., 2013).

More formally, given a sequence of training
words w1, w2, w3,...,wT , the objective of Skip-
gram is to maximize the average log probability

1
T

T

∑
t=1

(
∑

−k≤ j≤k, j 6=0
log p(wt+ j|wt)

)
(1)

where k is the size of the training window. The
inner summation spans from −k to k to compute
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Sense Synset Gloss

banks1

(sloping land (especially the slope beside a body of water))
bank “they pulled the canoe up on the bank”;

“he sat on the bank of the river and watched the currents”

banks2

depository institution, (a financial institution that accepts deposits and channels the
bank, money into lending activities)
banking concern, “he cashed a check at the bank”;
banking company “that bank holds the mortgage on my home”

Table 1: Example of a synset in WordNet.

the log probability of correctly predicting the word
wt+ j given the word in the middle wt . The outer
summation covers all words in the training data.

The prediction task is performed via softmax, a
multiclass classifier. There, we have

p(wt+ j|wt) =
exp(vec′(wt+ j)

>vec(wt))

∑W
w=1 exp(vec′(w)>vec(wt))

(2)

where vec(w) and vec′(w) are the “input” and
“output” vector representations of w. This formu-
lation is impractical because the cost of comput-
ing p(wt+ j|wt) is proportional to W , which is often
large( 105−107 terms).

Initializing sense vectors. After learning the
word vectors using the Skip-gram model, we ini-
tialize the sense vectors based on the glosses of
senses. The basic idea of the sense vector initial-
ization is to represent the sense by using the sim-
ilar words in the gloss. From the content words
in the gloss, we select those words whose cosine
similarities with the original word are larger than
a similarity threshold δ . Formally, for each sense
wsi in WN, we first define a candidate set from
gloss(wsi)

cand(wsi) = {u|u ∈ gloss(wsi),u 6= w,

POS(u) ∈CW,cos(vec(w),vec(u)) > δ} (3)

where POS(u) is the part-of-speech tagging of the
word u and CW is the set of all possible part-of-
speech tags that content words could have. In this
paper, CW contains the following tags: noun, verb,
adjective and adverb.

Then the average of the word vectors in
cand(wsi) is used as the initialization value of the
sense vector vec(wsi).

vec(wsi) =
1

|cand(wsi)| ∑
u∈cand(wsi )

vec(u) (4)

For example, in WordNet, the gloss of the sense
banks1 is “sloping land (especially the slope beside
a body of water)) they pulled the canoe up on the
bank; he sat on the bank of the river and watched
the currents”. The gloss contains a definition of
the sense and two examples of the sense. The
content words and the cosine similarities with the
word “bank” are listed as follows: (sloping, 0.12),
(land, 0.21), (slope, 0.17), (body, 0.01), (water,
0.10), (pulled, 0.01), (canoe, 0.09), (sat, 0.06),
(river, 0.43), (watch, -0.11), (currents, 0.01). If
the threshold, δ , is set to 0.05, then cand(banks1)
is {sloping, land, slope, water, canoe, sat, riv-
er}. Then the average of the word vectors in
cand(banksi) is used as the initialization value of
vec(banksi).

2.3 Performing Word Sense Disambiguation.

One of the state-of-the-art WSD results can be
obtained using exemplar models, i.e., the word
meaning is modeled by using relevant occurrences
only, rather than merging all of the occurrences in-
to a single word vector (Erk and Pado, 2010). In-
spired by this idea, we perform word sense disam-
biguation to obtain more relevant occurrences.

Here, we perform knowledge-based word sense
disambiguation for training data on an all-words
setting, i.e., we will disambiguate all of the con-
tent words in a sentence. Formally, the sentence S
is a sequence of words (w1,w2,...,wn), and we will
identify a mapping M from words to senses such
that M(i) ∈ SensesWN(wi), where SensesWN(wi) is
the set of senses encoded in the WN for word wi.
For sentence S, there are ∏n

i=1 |SenseWN(wi)| pos-
sible mapping answers, which are impractical to
compute. Thus, we design two simple algorithms,
L2R (left to right) algorithm and S2C (simple to
complex) algorithm, for word sense disambigua-
tion based on the sense vectors.

The main difference between L2R and S2C is
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the order of words when performing word sense
disambiguation. When given a sentence, the L2R
algorithm disambiguates the words from left to
right (the natural order of a sentence), whereas the
S2C algorithm disambiguates the words with few-
er senses first. The main idea of S2C algorithm
is that the words with fewer senses are easier to
disambiguate, and the disambiguation result can
be helpful to disambiguate the words with more
senses. Both of the algorithms have three steps:

Context vector initialization. Similar to the ini-
tialization of sense vectors, we use the average of
all of the content words’ vectors in a sentence as
the initialization vector of context.

vec(context) =
1

|cand(S)| ∑
u∈cand(S)

vec(u) (5)

where cand(S) is the set of content words
cand(S) = {u|u ∈ S,POS(u) ∈CW}.
Ranking words. For L2R, we do nothing in this
step. For S2C, we rank the words based on the
ascending order of |SensesWN(wi)|.
Word sense disambiguation. For both L2R and
S2C, we denote the order of words as L and per-
form word sense disambiguation according to L.

First, we skip a word if the word is not
a content word or the word is monosemous
(|SensesWN(wi)| = 1). Then, for each word in
L, we can compute the cosine similarities be-
tween the context vector and its sense vectors. We
choose the sense that yields the maximum cosine
similarity as its disambiguation result. If the s-
core margin between the maximum and the sec-
ond maximum is larger than the threshold ε , we
are confident with the disambiguation result of wi

and then use the sense vector to replace the word
vector in the context vector. Thus, we obtain a
more accurate context vector for other words that
are still yet to be disambiguated.

For example, given a sentence “He sat on the
bank of the lake”, we first explain how S2C work-
s. In the sentence, there are three content word-
s, “sat”, “bank” and “lake”, to be disambiguated.
First, the sum of the three word vectors is used as
the initialization of the context vector. Then we
rank the words by |SensesW N(wi)|, in ascending
order, that is, lake (3 senses), bank (10 senses), sat
(10 senses). We first disambiguate the word “lake”
based on the similarities between its sense vectors
and context vector. If the score margin is larger

bank
input

projection

output

sat on the of the lakesit lake1 1

Figure 1: The architecture of our model. The
training objective of Skip-gram is to train word
vector representations that are not only good at
predicting its context words but are also good at
predicting its context words’ senses. The center
word “bank” is used to predict not only its context
words but also the sense “sit1” and “lake1”.

than the threshold ε , then we are confident with
this disambiguation result and replace the word
vector with the sense vector to update the contex-
t vector. It would be helpful to disambiguate the
next word, “bank”. We repeat this process until all
three words are disambiguated.

For L2R, the order of words to be disambiguat-
ed will be “sat”, “bank” and “lake”. In this time,
when disambiguating “bank” (10 senses), we still
don’t know the sense of “lake” (3 senses).

2.4 Learning Sense Vectors from Relevant
Occurrences.

Based on the disambiguation result, we modify the
training objective of Skip-gram and train the sense
vectors directly from the large-scale corpus. Our
training objective is to train the vector representa-
tions that are not only good at predicting its con-
text words but are also good at predicting its con-
text words’ senses. The architecture of our model
is shown in Figure 1.

More formally, given the disambiguation result
M(w1), M(w2), M(w3),...,M(wT ), the training ob-
jective is modified to

1
T

T

∑
t=1

(
k

∑
j=−k

log{p(wt+ j|wt)p(M(wt+ j)|wt)}
)
(6)

where k is the size of the training window. The
inner summation spans from −k to k to compute
the log probability of correctly predicting the word
wt+ j and the log probability of correctly predicting
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the sense M(wt+ j) given the word in the middle
wt . The outer summation covers all words in the
training data.

Because not all of the disambiguation results are
correct, we only disambiguate the words that we
are confident in. Similar to step 3 of our WSD
algorithm, we only disambiguate words under the
condition that the score margin between the max-
imum and the second maximum is larger than the
score margin threshold, ε .

We also use the softmax function to define
p(wt+ j|wt) and p(M(wt+ j)|wt). Then, we use hi-
erarchical softmax (Morin and Bengio, 2005) to
greatly reduce the computational complexity and
learn the sense vectors directly from the relevant
occurrences.

3 Experiments

In this section, we first present the nearest neigh-
bors of some words and their senses, showing that
our sense vectors can capture the semantics of
words. Then, we use three tasks to evaluate our u-
nified model: a contextual word similarity task to
evaluate our sense representations, and two stan-
dard WSD tasks to evaluate our knowledge-based
WSD algorithm based on the sense vectors. Ex-
perimental results show that our model not only
improves the correlation with human judgments
on the contextual word similarity task but also out-
performs state-of-the-art supervised WSD system-
s on domain-specific datasets and competes with
them in a coarse-grained all-words setting.

We choose Wikipedia as the corpus to train
the word vectors because of its wide coverage
of topics and words usages. We use an English
Wikipedia database dump from October 2013 2,
which includes roughly 3 million articles and 1
billion tokens. We use Wikipedia Extractor 3 to
preprocess the Wikipedia pages and only save the
content of the articles.

We use word2vec 4 to train Skip-gram. We use
the default parameters of word2vec and the dimen-
sion of the vector representations is 200.

We use WordNet 5 as our sense inventory. The
datasets for different tasks are tagged with differ-
ent versions of WordNet. The version of WordNet

2http://download.wikipedia.org.
3The tool is available from http://medialab.di.

unipi.it/wiki/Wikipedia_Extractor.
4The code is available from https://code.

google.com/p/word2vec/.
5http://wordnet.princeton.edu/.

Word or sense Nearest neighbors
bank banks, IDBI, CitiBank

banks1 river, slope, Sooes
banks2 mortgage, lending, loans

star stars, stellar, trek

stars1

photosphere, radiation,
gamma-rays

stars2 someone, skilled, genuinely
plant plants, glavaticevo, herbaceous

plants1

factories, machinery,
manufacturing

plants2

locomotion, organism,
organisms

Table 2: Nearest neighbors of word vectors and
sense vectors learned by our model based on co-
sine similarity. The subscript of each sense label
corresponds to the index of the sense in Word-
Net. For example, banks2 is the second sense of
the word bank in WordNet.

is 1.7 for the domain-specific WSD task and 2.1
for the coarse-grained WSD task.

We use the S2C algorithm described in Section
2.3 to perform word sense disambiguation to ob-
tain more relevant occurrences for each sense. We
compare S2C and L2R on the coarse-grained WS-
D task in a all-words setting.

The experimental results of our model are ob-
tained by setting the similarity threshold as δ = 0
and the score margin threshold as ε = 0.1. The in-
fluence of parameters on our model can be found
in Section 3.5.

3.1 Examples for Sense Vectors
Table 2 shows the nearest neighbors of word vec-
tors and sense vectors based on cosine similari-
ty. We see that our sense representations can i-
dentify different meanings of a word, allowing our
model to capture more semantic and syntactic re-
lationships between words and senses. Note that
each sense vector in our model corresponds to a
sense in WordNet; thus, our sense vectors can be
used to perform knowledge-based word sense dis-
ambiguation, whereas the vectors of cluster-based
models cannot.

3.2 Contextual Word Similarity
Experimental setting. A standard dataset for e-
valuating a vector-space model is the WordSim-
353 dataset (Finkelstein et al., 2001), which con-
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Model ρ×100
C&W-S 57.0
Huang-S 58.6
Huang-M AvgSim 62.8
Huang-M AvgSimC 65.7
Our Model-S 64.2
Our Model-M AvgSim 66.2
Our Model-M AvgSimC 68.9

Table 3: Spearman’s ρ on the SCWS dataset. Our
Model-S uses one representation per word to com-
pute similarities, while Our Model-M uses one
representation per sense to compute similarities.
AvgSim calculates the similarity with each sense
contributing equally, while AvgSimC weighs the
sense according to the probability of the word
choosing that sense in context c.

sists of 353 pairs of nouns. However, each pair of
nouns in WordSim-353 is presented without con-
text. This is problematic because the meanings
of homonymous and polysemous words depend
highly on the words’ contexts. Thus we choose the
Stanford’s Contextual Word Similarities (SCWS)
dataset from (Huang et al., 2012) 6. The SCWS
dataset contains 2003 pairs of words and each pair
is associated with 10 human judgments on similar-
ity on a scale from 0 to 10. In the SCWS dataset,
each word in a pair has a sentential context.

In our experiments, the similarity between a
pair of words (w, w′) is computed as follows:

AvgSimC(w,w′) =
1

MN

M

∑
i=1

N

∑
j=1

p(i|w,c)p( j|w′,c′)d(vec(wsi),vec(w′s j
)) (7)

where p(i|w,c) is the likelihood that word w
chooses its ith sense given context c. d(vec,vec′)
is a function computing the similarity between two
vectors, and here we use cosine similarity.

Results and discussion. For evaluation, we
compute the Spearman correlation between a
model’s computed similarity scores and human
judgements. Table 3 shows our results com-
pared to previous methods, including (Collobert
and Weston, 2008)’s language model (C&W), and
Huang’s model which utilize the global context
and multi-prototype to improve the word represen-
tations.

6The dataset can be downloaded at http://ai.
stanford.edu/˜ehhuang/.

From Table 3, we observe that:

• Our single-vector version outperforms
Huang’s single-vector version. This indi-
cates that, by training the word vectors and
sense vectors jointly, our model can better
capture the semantic relationships between
words and senses.

• With one representation per sense, our mod-
el can outperform the single-vector version
without using context (66.2 vs. 64.2).

• Our model obtains the best performance
(68.9) by using AvgSimC, which takes con-
text into account.

3.3 Domain-Specific WSD
Experimental setting. We use Wikipedia as
training data because of its wide coverage for spe-
cific domains. To test our performance on do-
main word sense disambiguation, we evaluated
our system on the dataset published in (Koeling
et al., 2005). This dataset consists of examples
retrieved from the Sports and Finance sections of
the Reuters corpus. 41 words related to the Sports
and Finance domains were selected, with an aver-
age polysemy of 6.7 senses, ranging from 2 to 13
senses.

Approximately 100 examples for each word
were annotated with senses from WordNet v.1.7
by three reviewers, yielding an inter-tagger agree-
ment of 65%. (Koeling et al., 2005) did not clarify
how to select the “correct” sense for each word, so
we followed the work of (Agirre et al., 2009) and,
used the sense chosen by the majority of taggers
as the correct answer.

Baseline methods. As a baseline, we use the
most frequent WordNet sense (MFS), as well as
a random sense assignment. We also compare our
results with four systems 7: Static PageRank (A-
girre et al., 2009), the k nearest neighbor algorith-
m (k-NN), Degree (Navigli and Lapata, 2010) and
Personalized PageRank (Agirre et al., 2009).

Static PageRank applies traditional PageRank
over the semantic graph based on WordNet and
obtains a context-independent ranking of word
senses.

k-NN is a widely used classification method,
where neighbors are the k labeled examples most

7We compare only with those systems performing token-
based WSD, i.e., disambiguating each instance of a target
word separately.
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Algorithm
Sports Finance
Recall Recall

Random BL 19.5 19.6
MFS BL 19.6 37.1

k-NN 30.3 43.4
Static PR 20.1 39.6

Personalized PR 35.6 46.9
Degree 42.0 47.8

Our Model 57.3 60.6

Table 4: Performance on the Sports and Finance
sections of the dataset from (Koeling et al., 2005).

similar to the test example. The k-NN system is
trained on SemCor (Miller et al., 1993), the largest
publicly available annotated corpus.

Degree and Personalized PageRank are state-
of-the-art systems that exploit WordNet to build
a semantic graph and exploit the structural proper-
ties of the graph in order to choose the appropriate
senses of words in context.

Results and discussion. Similar to other work
on this dataset, we use recall (the ratio of correct
sense labels to the total labels in the gold standard)
as our evaluation measure. Table 4 shows the re-
sults of different WSD systems on the dataset, and
the best results are shown in bold. The differences
between other results and the best result in each
column of the table are statistically significant at
p < 0.05.

The results show that:

• Our model outperforms k-NN on the t-
wo domains by a large margin, support-
ing the findings from (Agirre et al., 2009)
that knowledge-based systems perform bet-
ter than supervised systems when evaluated
across different domains.

• Our model also achieves better results than
the state-of-the-art system (+15.3% recall on
Sports and +12.8% recall on Finance against
Degree). The reason for this is that when
dealing with short sentences or context words
that are not in WordNet, our model can still
compute similarity based on the context vec-
tor and sense vectors, whereas Degree will
have difficulty building the semantic graph.

• Moreover, our model achieves the best per-
formance by only using the unlabeled text da-
ta and the definitions of senses, whereas other

Algorithm Type
Nouns only All words

F1 F1

Random BL U 63.5 62.7
MFS BL Semi 77.4 78.9

SUSSX-FR Semi 81.1 77.0
NUS-PT S 82.3 82.5

SSI Semi 84.1 83.2
Degree Semi 85.5 81.7

Our ModelL2R U 79.2 73.9
Our ModelS2C U 81.6 75.8
Our ModelL2R Semi 82.5 79.6
Our ModelS2C Semi 85.3 82.6

Table 5: Performance on Semeval-2007 coarse-
grained all-words WSD. In the type column,
U, Semi and S stand for unsupervised, semi-
supervised and supervised, respectively. The dif-
ferences between the results in bold in each col-
umn of the table are not statistically significant at
p < 0.05.

methods rely greatly on high-quality seman-
tic relations or annotated data, which are hard
to acquire.

3.4 Coarse-grained WSD

Experimental setting. We also evaluate our
WSD model on the Semeval-2007 coarse-grained
all-words WSD task (Navigli et al., 2007). There
are multiple reasons that we perform experiments
in a coarse-grained setting: first, it has been ar-
gued that the fine granularity of WordNet is one
of the main obstacles to accurate WSD (cf. the
discussion in (Navigli, 2009)); second, the train-
ing corpus of word representations is Wikipedia,
which is quite different from WordNet.

Baseline methods. We compare our model with
the best unsupervised system SUSSX-FR (Koel-
ing and McCarthy, 2007), and the best supervised
system, NUS-PT (Chan et al., 2007), participat-
ing in the Semeval-2007 coarse-grained all-words
task. We also compare with SSI (Navigli and Ve-
lardi, 2005) and the state-of-the-art system De-
gree (Navigli and Lapata, 2010). We use different
baseline methods for the two WSD tasks because
we want to compare our model with the state-
of-the-art systems that are applicable to different
datasets and show that our WSD method can per-
form robustly in these different WSD tasks.
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Results and discussion. We report our results in
terms of F1-measure on the Semeval-2007 coarse-
grained all-words dataset (Navigli et al., 2007).
Table 5 reports the results for nouns (1,108 words)
and all words (2,269 words). The difference be-
tween unsupervised and semi-supervised methods
is whether the method uses MFS as a back-off s-
trategy.

We can see that the S2C algorithm outperforms
the L2R algorithm no matter on the nouns subset
or on the entire set. This indicates that words with
fewer senses are easier to disambiguate, and it can
be helpful to disambiguate the words with more
senses.

On the nouns subset, our model yields compa-
rable performance to SSI and Degree, and it out-
performs NUS-PT and SUSSX-FR. Moreover, our
unsupervised WSD method (S2C) beats the MF-
S baseline, which is notably a difficult competitor
for knowledge-based systems.

On the entire set, our semi-supervised model is
significantly better than SUSSX-FR, and it is com-
parable with SSI and Degree. In contrast to SSI,
our model is simple and does not rely on a cost-
ly annotation effort to engineer the set of semantic
relations.

Overall, our model achieves state-of-the-art per-
formance on the Semeval-2007 coarse-grained all-
words dataset compared to other systems, with a
simple WSD algorithm that only relies on a large-
scale unlabeled text corpora and a sense inventory.

3.5 Parameter Influence

We investigate the influence of parameters on our
model with coarse-grained all-words WSD task.
The parameters include the similarity threshold, δ ,
and the score margin threshold, ε .

Similarity threshold. In Table 6, we show the
performance of domain WSD when the similari-
ty threshold δ ranges from −0.1 to 0.3. The co-
sine similarity interval is [-1, 1], and we focus on
the performance in the interval [-0.1, 0.3] for two
reasons: first, no words are removed from glosses
when δ < −0.1; second, nearly half of the word-
s are removed when δ > 0.3 and the performance
drops significantly for the WSD task. From table
6, we can see that our model achieves the best per-
formance when δ = 0.0.

Score margin threshold. In Table 7, we show
the performance on the coarse-grained all-words

Parameter Nouns only All words
δ =−0.10 79.8 74.3
δ =−0.05 81.0 74.6
δ = 0.00 81.6 75.8
δ = 0.05 81.3 75.4
δ = 0.10 80.8 75.2
δ = 0.15 80.0 75.0
δ = 0.20 77.1 73.3
δ = 0.30 75.0 72.1

Table 6: Evaluation results on the coarse-grained
all-words WSD when the similarity threshold δ
ranges from −0.1 to 0.3.

Parameter Nouns only All words
ε = 0.00 78.2 72.9
ε = 0.05 79.5 74.5
ε = 0.10 81.6 75.8
ε = 0.15 81.2 74.7
ε = 0.20 80.9 75.1
ε = 0.25 80.2 74.8
ε = 0.30 80.4 74.9

Table 7: Evaluation results on the coarse-grained
all-words WSD when the score margin threshold
ε ranges from 0.0 to 0.3.

WSD when the score margin threshold ε ranges
from 0.0 to 0.3. When ε = 0.0, we use every
disambiguation result to update the context vec-
tor. When ε 6= 0, we only use the confident disam-
biguation results to update the context vector if the
score margin is larger than ε . Our model achieves
the best performance when ε = 0.1.

4 Related Work

4.1 Word Representations

Distributed representations for words were pro-
posed in (Rumelhart et al., 1986) and have been
successfully used in language models (Bengio et
al., 2006; Mnih and Hinton, 2008) and many nat-
ural language processing tasks, such as word rep-
resentation learning (Mikolov, 2012), named enti-
ty recognition (Turian et al., 2010), disambigua-
tion (Collobert et al., 2011), parsing and tag-
ging (Socher et al., 2011; Socher et al., 2013).
They are very useful in NLP tasks because they
can be used as inputs to learning algorithms or as
extra word features in NLP systems. Hence, many
NLP applications, such as keyword extraction (Li-
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u et al., 2010; Liu et al., 2011b; Liu et al., 2012),
social tag suggestion (Liu et al., 2011a) and text
classification (Baker and McCallum, 1998), may
also potentially benefit from distributed word rep-
resentation. The main advantage is that the rep-
resentations of similar words are close in vector
space, which makes generalization to novel pat-
terns easier and model estimation more robust.

Word representations are hard to train due to the
computational complexity. Recently, (Mikolov et
al., 2013) proposed two particular models, Skip-
gram and CBOW, to learn word representations in
large amounts of text data. The training objective
of the CBOW model is to combine the representa-
tions of the surrounding words to predict the word
in the middle, while the Skip-gram model’s is to
learn word representations that are good at predict-
ing its context in the same sentence (Mikolov et
al., 2013). Our paper uses the model architecture
of Skip-gram.

Most of the previous vector-space models use
one representation per word. This is problematic
because many words have multiple senses. The
multi-prototype approach has been widely stud-
ied. (Reisinger and Mooney, 2010) proposed the
multi-prototype vector-space model. (Huang et
al., 2012) used the multi-prototype models to learn
the vector for different senses of a word. All of
these models use the clustering of contexts as a
word sense and can not be directly used in word
sense disambiguation.

After our paper was submitted, we perceive the
following recent advances: (Tian et al., 2014) pro-
posed a probabilistic model for multi-prototype
word representation. (Guo et al., 2014) explored
bilingual resources to learn sense-specific word
representation. (Neelakantan et al., 2014) pro-
posed an efficient non-parametric model for multi-
prototype word representation.

4.2 Knowledge-based WSD

The objective of word sense disambiguation (WS-
D) is to computationally identify the meaning of
words in context (Navigli, 2009). There are t-
wo approaches of WSD that assign meaning of
words from a fixed sense inventory, supervised and
knowledge-based methods. Supervised approach-
es require large labeled training sets, which are
time consuming to create. In this paper, we on-
ly focus on knowledge-based word sense disam-
biguation.

Knowledge-based approaches exploit knowl-
edge resources (such as dictionaries, thesauri, on-
tologies, collocations, etc.) to determine the
senses of words in context. However, it has
been shown in (Cuadros and Rigau, 2006) that
the amount of lexical and semantic information
contained in such resources is typically insuf-
ficient for high-performance WSD. Much work
has been presented to automatically extend ex-
isting resources, including automatically linking
Wikipedia to WordNet to include full use of the
first WordNet sense heuristic (Suchanek et al.,
2008), a graph-based mapping of Wikipedia cat-
egories to WordNet synsets (Ponzetto and Nav-
igli, 2009), and automatically mapping Wikipedia
pages to WordNet synsets (Ponzetto and Navigli,
2010).

It was recently shown that word representation-
s can capture semantic and syntactic information
between words (Mikolov et al., 2013). Some re-
searchers tried to incorporate WordNet senses in a
neural model to learn better word representation-
s (Bordes et al., 2011). In this paper, we have pro-
posed a unified method for word sense representa-
tion and disambiguation to extend the information
contained in the vector representations to the ex-
isting resources. Our method only requires a large
amount of unlabeled text to train sense representa-
tions and a dictionary to provide the definitions of
word meanings, which makes it easily applicable
to other resources.

5 Conclusion

In this paper, we present a unified model for word
sense representation and disambiguation that us-
es one representation per sense. Experimental re-
sults show that our model improves the perfor-
mance of contextual word similarity compared to
existing WSR methods, outperforms state-of-the-
art supervised methods on domain-specific WSD,
and achieves competitive performance on coarse-
grained all-words WSD. Our model only requires
large-scale unlabeled text corpora and a sense in-
ventory for WSD, thus it can be easily applied to
other corpora and tasks.

There are still several open problems that
should be investigated further:

1. Because the senses of words change over
time (new senses appear), we will incorpo-
rate cluster-based methods in our model to
find senses that are not in the sense inventory.
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2. We can explore other WSD methods based
on sense vectors to improve our performance.
For example, (Li et al., 2010) used LDA to
perform data-driven WSD in a manner simi-
lar to our model. We may integrate the advan-
tages of these models and our model together
to build a more powerful WSD system.

3. To learn better sense vectors, we can exploit
the semantic relations (such as the hypernym
and hyponym relations defined in WordNet)
between senses in our model.
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